首页 问答文章正文

计算机视觉资料汇总(3DCVer)

问答 2024年12月07日 05:17 18 历东

计算机视觉资料汇总(3DCVer)

本资料首发于公众号【3D视觉工坊】,原文请见那些精贵的3D视觉系统学习资源总结(附书籍、网址与视频教程),更多干货请关注公众号后台回复关键字获取~ Linux: 学习网站 Linux中国:Linux 中国◆开源社区 鸟哥的linux私房菜:鳥哥的 Linux 私房菜 -- 鳥哥的 Linux 私房菜 首頁 Linux公社:Linux公社 - Linux系统门户网站 学习书籍 《鸟哥的Linux私房菜》 《Linux命令行与shell脚本编程大全》 《Linux Shell脚本攻略》 《Linux命令行大全》 《Linux就该这么学》 《UNIX高级编程》 在公众号【3DCVer】后台回复“Linux”,即可获取完整PDF资料。 Vim: 学习网站 OpenVim:http://www.openvim.com/tutorial.html Vim Adventures:http://vim-adventures.com/ Vim详细教程:zempty:精通 VIM ,此文就够了 Interactive Vim tutorial:http://www.openvim.com/ 最详细的Vim编辑器指南:最详细的 Vi 编辑器使用指南(翻译) 简明Vim教程:http://coolshell.cn/articles/5426.html Vim学习资源整理:https://github.com/vim-china/hello-vim 学习书籍 《Mastering Vim》 《Modern Vim》 《Mastering Vim Quickly》 Git: Git学习资源 Git官方文档:GitLab Docs | GitLab Git-book:Git - Book Github超详细的Git学习资料:https://github.com/xirong/my-git Think like Git:Think Like (a) Git Atlassian Git Tutorial:https://www.atlassian.com/git/tutorials Git Workflows and Tutorials: 原文:Git Workflow | Atlassian Git Tutorial 译文:xirong/my-git 版本管理工具介绍--Git篇:http://www.imooc.com/learn/208 廖雪峰Git教程:Git教程 学习书籍 《Git学习指南》 《Pro Git》 《Pro Git》中文版翻译:前言 · Pro Git 第二版 简体中文 《Git版本控制管理》   在公众号【3DCVer】,后台回复“Git”,即可获取完整PDF资料。   Shell: 学习资源 Shell在线速查表:Bash scripting cheatsheet Bash Guide for Beginners: http://www.tldp.org/LDP/Bash-Beginners-Guide/html/ Advanced Bash-Scripting Guide: http://www.tldp.org/LDP/abs/html/ 学习书籍 Bash Notes For Professionals 《linux shell脚本攻略》 《LINUX与UNIX Shell编程指南》 在公众号【3DCVer】后台回复“Shell”,即可获取完整PDF资料。 学习视频 https://www.youtube.com/playlist?list=PLdfA2CrAqQ5kB8iSbm5FB1ADVdBeOzVqZ GDB: GDB调试入门指南:守望:GDB调试入门指南 GDB Documentation:GDB Documentation CMake: 学习资源 Cmake-tutoria:CMake Tutorial | CMake Learning-cmake:Akagi201/learning-cmake awesome-cmake(公司常用的培训资料):onqtam/awesome-cmake 1. 微分几何 2. 拓扑理论 3. 随机算法 4. 计算方法 5. 多视图几何 6. 图像处理基础算法 7. 复变函数 8. 非线性优化 9. 数学分析 10. 数值分析 11. 矩阵论 12. 离散数学 13. 最优化理论 14. 概率论与数理统计 15. 泛函分析   在公众号【3DCVer】后台回复“数学基础”,即可获取完整PDF资料。 学习书籍 1. 剑指offer 2. 编程之法 3. 编程之美 4. 程序员面试宝典 5. 算法导论 6. 图解数据结构:使用C++(黄皮书)   在公众号【3DCVer】后台回复“数据结构与算法”,即可获取完整PDF资料。 学习视频 清华大学邓俊辉:【全】清华大学-邓俊辉MOOC数据结构与算法全套_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili 小甲鱼:(小甲鱼)数据结构与算法(全99讲完结版)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili 剑指offer数据结构与算法:剑指offer-数据结构与算法(全套无水印)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili 数据结构与算法C++实现:数据结构与算法(C++实现)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili C++ 《C++ Primer》 《C++ Primer Plus》 《深度探索C++对象模型》 《Effective C++》 《More Effective C++ 35个改善编程与设计的有效方法》 《C++标准库》 在公众号【3DCVer】后台回复“C++”,即可获取完整PDF资料。 Python 《Python编程从入门到实践》 《Python高级编程》 《Python高性能编程》 《Python核心编程》 在公众号【3DCVer】后台回复“Python”,即可获取完整PDF资料。 C 《C语言程序设计》 《C Primer Plus》 《C和指针》 《C语言接口与实现》 《C/C++深层探索》 《Linux C编程一站式学习》 《C陷阱与缺陷》 《C语言参考手册》   在公众号【3DCVer】后台回复“C语言”,即可获取完整PDF资料。 ROS 《机器人ROS开发实践》 《ROS机器人编程:原理与应用》 《ROS机器人开发应用案例分析》   在公众号【3DCVer】后台回复“ROS”,即可获取完整PDF资料。 学习书籍 1、《Deep Learning》(深度学习花书,Ian Goodfellow,Yoshua Bengio著) 2、《深度学习之TensorFlow 入门、原理与进阶实战》 3、《深度学习之TensorFlow工程化项目实战》 4、《动手学深度学习》   在公众号【3DCVer】后台回复“深度学习”,即可获取完整PDF资料。 学习资源 深度学习500问:scutan90/DeepLearning-500-questions awesome-deep-learning:ChristosChristofidis/awesome-deep-learning awesome-deep-learning-papers:https://github.com/terryum/awesome-deep-learning-papers Deep-Learning-Papers-Reading-Roadmap:floodsung/Deep-Learning-Papers-Reading-Roadmap MIT-deep-learning:lexfridman/mit-deep-learning MIT Deep Learning Book:janishar/mit-deep-learning-book-pdf Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials: TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials 学习视频 1、吴恩达深度学习工程师全套课程(网易云课堂) 深度学习工程师微专业 - 一线人工智能大师吴恩达亲研-网易云课堂 - 网易云课堂 2、斯坦福大学李飞飞 cs231n: CS231n: Convolutional Neural Networks for Visual Recognition 3、李宏毅深度学习视频教程 【李宏毅 深度学习19(完整版)国语】机器学习 深度学习_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili 4、动手学深度学习(李沐) 前言 - 《动手学深度学习》 文档 5、深度学习框架Tensorflow学习与应用 深度学习框架Tensorflow学习与应用_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili 深度学习进阶知识 1、数据增强相关知识 数据增强的一些开源项目: aleju/imgaug mdbloice/Augmentor google-research/uda 谷歌论文:https://arxiv.org/abs/1909.13719 2、目标检测网络的一些总结内容 Github链接:hoya012/deep_learning_object_detection Github链接:abhineet123/Deep-Learning-for-Tracking-and-Detection 3、语义分割相关 https://github.com/mrgloom/awesome-semantic-segmentation Github链接:mrgloom/awesome-semantic-segmentation 4、图像检索 Github链接: zhangqizky/awesome-cbir-papers https://github.com/willard-yuan/awesome-cbir-papers 5、图像分类 zhangqizky/Image_Classification_with_5_methods 6、VAE相关知识点 Github链接:matthewvowels1/Awesome-VAEs 7、人体姿态估计 Github链接:wangzheallen/awesome-human-pose-estimation 8、目标跟踪 Github链接:czla/daily-paper-visual-tracking 多目标跟踪: SpyderXu/multi-object-tracking-paper-list 9、异常检测 Github链接:yzhao062/anomaly-detection-resources 10、活体检测 Github链接: SoftwareGift/FeatherNets_Face-Anti-spoofing-Attack-Detection-Challenge-CVPR2019 11、人群计数 Github链接:gjy3035/Awesome-Crowd-Counting 12、模型的压缩、加速和修建 模型的压缩和加速 Github链接: memoiry/Awesome-model-compression-and-acceleration https://github.com/cedrickchee/awesome-ml-model-compression 模型的修建: Github链接: he-y/Awesome-Pruning 13、行为识别和视频理解 Github链接: jinwchoi/awesome-action-recognition 14、GAN相关资料 Github链接: zhangqianhui/AdversarialNetsPapers nightrome/really-awesome-gan hindupuravinash/the-gan-zoo eriklindernoren/Keras-GAN 15、图像和视频超分辨率 图像超分辨率Github链接: ChaofWang/Awesome-Super-Resolution YapengTian/Single-Image-Super-Resolution ptkin/Awesome-Super-Resolution 视频超分辨率链接: LoSealL/VideoSuperResolution 16、人脸landmark3D Github链接: mrgloom/Face-landmarks-detection-benchmark D-X-Y/landmark-detection ChanChiChoi/awesome-Face_Recognition 17、面部表情识别 Github链接: amusi/Deep-Learning-Interview-Book 18、场景识别 Github链接: CSAILVision/places365 chenyuntc/scene-baseline foamliu/Scene-Classification 19、深度学习在推荐系统中的应用 Github链接: robi56/Deep-Learning-for-Recommendation-Systems 20、强化学习资料 Github链接: wwxFromTju/awesome-reinforcement-learning-zh 框架 Autokeras: https://github.com/keras-team/autokeras 学习资源 Awesome-AutoML-papers(超全): hibayesian/awesome-automl-papers   Tensorflow Tensorflow中文官方文档:jikexueyuanwiki/tensorflow-zh Tensorflow2.0 tutorials:czy36mengfei/tensorflow2_tutorials_chinese awesome-tensorflow:https://github.com/jtoy/awesome-tensorflow 图解Tensorflow源码:yao62995/tensorflow Caffe caffe2_cpp_tutorial:leonardvandriel/caffe2_cpp_tutorial Caffe使用教程:shicai/Caffe_Manual Awesome-Caffe:MichaelXin/Awesome-Caffe Keras Keras中文文档:主页 - Keras 中文文档 Pytorch Pytorch-tutorial:yunjey/pytorch-tutorial pytorch-handbook:zergtant/pytorch-handbook Awesome-pytorch-list:bharathgs/Awesome-pytorch-list MXNet Tutorial:Docs 深度学习网络可视化工具 Netron:lutzroeder/netron NN-SVG:https://github.com/zfrenchee PlotNeuralNet:HarisIqbal88/PlotNeuralNet ConvNetDraw:https://cbovar.github.io/ConvNetDraw/ Draw_Convnet:gwding/draw_convnet Netscope:https://github.com/ethereon/netscope 学习书籍 机器学习(周志华) 统计学习方法(李航) PRML模式识别与机器学习(马春鹏) 机器学习实战 机器学习系统设计 分布式机器学习:算法、理论与实践 机器学习中的数学 Machine Learning - A Probabilistic Perspective 百面机器学习 美团机器学习实践 在公众号【3DCVer】后台回复“机器学习”,即可获取完整PDF资料。 学习资源 AILearning:apachecn/AiLearning awesome-machine-learning:https://github.com/josephmisiti/awesome-machine-learning awesome-machine-learning:jobbole/awesome-machine-learning-cn machine-learning-for-software-engineers:ZuzooVn/machine-learning-for-software-engineers Machine Learning & Deep Learning Tutorials:https://github.com/ujjwalkarn/Machine-Learning-Tutorials homemade-machine-learning:trekhleb/homemade-machine-learning 3D-Machine-Learning(非常有价值):https://github.com/timzhang642/3D-Machine-Learning 学习视频 1、吴恩达CS229: Machine Learning (机器学习视频) 视频链接:CS229: Machine Learning 2、斯坦福大学机器学习视频 视频链接:https://www.coursera.org/learn/machine-learning 3、李宏毅机器学习视频 视频下载链接:https://www.bilibili.com/video/av59538266(这是B站上的在线视频) 百度云盘: 链接: https://pan.baidu.com/s/1HdVdx52MZ-FF5dSWpAOfeA 提取码: vjhy 4、Google机器学习 Github链接:yuanxiaosc/Google-Machine-learning-crash-course 学习书籍 《Computer Vision Models,Learning and Inference》 《Computer Vision Algorithms and Applications》 《Machine Vision Algorithms and Applications》 《Linear Algebra for Computer Vision》 《An Invitation to 3-D Vision: From Images to Geometric Models》 《计算机视觉中的多视图几何》 《Computer Vision for Visual Effects》 《Mastering OpenCV with Practical Computer Vision Projects》 《OpenCV3计算机视觉:Python语言实现》 《Practical OpenCV》 《OpenCV 3.0 Computer Vision with Java》   在公众号【3DCVer】后台回复“计算机视觉”,即可获取完整PDF资料。   学习课程 计算机视觉博士课程: hassony2/useful-computer-vision-phd-resources 81页计算机视觉学习指南: Start Here with Computer Vision, Deep Learning, and OpenCV - PyImageSearch Deep Learning(Advanced Computer Vision): Deep Learning: Advanced Computer Vision   学习视频 1、 百度Apollo系列教程 视频链接: http://bit.baidu.com/subject/index/id/16.html 2、(MIT自动驾驶课程)MIT 6.S094: Deep Learning for Self-Driving Cars 视频链接: MIT 6.S094: Deep Learning for Self-Driving Cars 3、国外教程自动驾驶汽车专项课程 课程: https://www.coursera.org/specializations/self-driving-cars 笔记: qiaoxu123/Self-Driving-Cars 文档: Document 方向汇总 机动车/非机动车/行人的检测、跟踪与捕获 各种车辆特征等结构化信息提取 各类驾驶行为的分析 违章事件的检出,交通数据的采集 车辆/行人检测与跟踪 道路分割与识别 车道线检测 场景分割 场景识别 自动泊车 障碍物的识别 车道偏离报警 交通标志的识别 车载视频雷达(激光、毫米波、超声波)多源信号融合技术 版面分析 文本行/串检测 单字/字符串识别 语义分析 结构化信息提取 AI芯片 深度学习的分布和并行处理系统   论文汇总 1、 单目图像中的3D物体检测 1.YOLO3D 2.SSD-6D 3.3D Bounding Box Estimation Using Deep Learning and Geometry 4.GS3D:An Effcient 3D Object Detection Framework for Autonomous Driving 5.Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image 6.Task-Aware Monocular Depth Estimation for 3D Object Detection 7.M3D-RPN: Monocular 3D Region Proposal Network for Object Detection 8.Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud 9.Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss 10.Disentangling Monocular 3D Object Detection 11.Shift R-CNN: Deep Monocular 3d Object Detection With Closed-Form Geometric Constraints 12.Monocular 3D Object Detection via Geometric Reasoning on Keypoints 13.Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction 14.Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving 15.3D Bounding Boxes for Road Vehicles: A One-Stage, Localization Prioritized Approach using Single Monocular Images 16.Orthographic Feature Transform for Monocular 3D Object Detection 17.Multi-Level Fusion based 3D Object Detection from Monocular Images 18.MonoGRNet:A Geometric Reasoning Network for Monocular 3D Object Localization 19.Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors 2、 基于激光雷达点云的3D物体检测 1.VoteNet 2.End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds 3.Deep Hough Voting for 3D Object Detection in Point Clouds 4.STD: Sparse-to-Dense 3D Object Detector for Point Cloud 5.PointPillars: Fast Encoders for Object Detection from Point Clouds 6.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud 7.PIXOR: Real-time 3D Object Detection from Point Clouds 8.Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds 9.YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud 10.Vehicle Detection from 3D Lidar Using FCN(百度早期工作2016年) 11.Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks 12.RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving 13.BirdNet: a 3D Object Detection Framework from LiDAR information 14.IPOD: Intensive Point-based Object Detector for Point Cloud 15.PIXOR: Real-time 3D Object Detection from Point Clouds 16.DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet 17.YOLO4D: A ST Approach for RT Multi-object Detection and Classification from LiDAR Point Clouds 18.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud 19.Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud 20.Voxel-FPN: multi-scale voxel feature aggregation in 3D object detection from point clouds 21.Fast Point RCNN 22.StarNet: Targeted Computation for Object Detection in Point Clouds 23.Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection 24.LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving 3、 基于RGB-D图像的3D物体检测 1.Frustum PointNets for 3D Object Detection from RGB-D Data 2.Frustum VoxNet for 3D object detection from RGB-D or Depth images 4、 基于融合方法的3D物体检测(RGB图像+激光雷达/深度图) 1.AVOD 2.A General Pipeline for 3D Detection of Vehicles 3.Adaptive and Azimuth-Aware Fusion Network of Multimodal Local Features for 3D Object Detection 4.Deep Continuous Fusion for Multi-Sensor 3D Object Detection 5.Frustum PointNets for 3D Object Detection from RGB-D Data 6.Joint 3D Proposal Generation and Object Detection from View Aggregation 7.Multi-Task Multi-Sensor Fusion for 3D Object Detection 8.Multi-View 3D Object Detection Network for Autonomous Driving 9.PointFusion:Deep Sensor Fusion for 3D Bounding Box Estimation 10.Pseudo-LiDAR from Visual Depth Estimation:Bridging the Gap in 3D Object Detection for Autonomous Driving 5、 基于双目视觉下的3D物体检测 1.Object-Centric Stereo Matching for 3D Object Detection 2.Triangulation Learning Network: from Monocular to Stereo 3D Object Detection 3.Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving 4.Stereo R-CNN based 3D Object Detection for Autonomous Driving 6、单目图像深度图生成 1.Deep Ordinal Regression Network for Monocular Depth Estimation 2.Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras 3.Detail Preserving Depth Estimation from a Single Image Using Attention Guided Networks 4.FastDepth: Fast Monocular Depth Estimation on Embedded Systems 5.Single View Stereo Matching 7、单目图像+激光雷达点云深度图生成 1.Sparse and noisy LiDAR completion with RGB guidance and uncertainty 2.Learning Guided Convolutional Network for Depth Completion 3.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance 8、深度图补全 1.Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion 2.Sparse and noisy LiDAR completion with RGB guidance and uncertainty 3.Confidence Propagation through CNNs for Guided Sparse Depth Regression 4.Learning Guided Convolutional Network for Depth Completion 5.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance 6.Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints 学习书籍 1.Computer Vision for Visual Effects 2.Computer Vision Algorithms and Applications 相关论文 1.Rolling Shutter Pose and Ego-motion Estimation using Shape-from-Template(ECCV2018) 2.BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration(ACM) 3.Depth Map Prediction from a Single Image using a Multi-Scale Deep Network 4.3D-R2N2:A Unified Approach for Single and Multi-view 3D Object Reconstruction 5.Pixel2Mesh:Generating 3D Mesh Models form Single RGB Images 6.Mesh R-CNN(FAIR,CVPR2019) 7.Conditional Single-view Shape Generation for Multi-view Stereo Reconstruction 8.R-MVSNet: Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference 9.StereoDRNet: Dilated Residual Stereo Net(cvpr2019) 一些开源网站 1、MVE 网站链接: Multi-View Environment 2、Bundler 网站链接: Structure from Motion (SfM) for Unordered Image Collections 3、VisualSFM 网站链接: http://ccwu.me/vsfm/ 4、OpenMVG 网站链接: SfM: Structure from Motion 5、ColMap 网站链接: https://demuc.de/colmap/ 相关资源网站 1、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS openMVG/awesome_3DReconstruction_list 学习书籍 《视觉测量》(张广军版) 《multiview geometry in computer vision》   在公众号【3DCVer】后台回复“立体视觉”,即可获取完整PDF资料。 学习课程 CS231A: Computer Vision, From 3D Reconstruction to Recognition: CS231A: Computer Vision, From 3D Reconstruction to Recognition   学习书籍 《光栅投影三维精密测量》 《基于多视图的三维结构重建》 开源项目 3d reconstruction using three step phase shift:phreax/structured_light A framework for Structured Light based 3D scanning projects:nikolaseu/neuvision awesome_3DReconstruction_list: https://github.com/openMVG/awesome_3DReconstruction_list     SLAM大佬网站 1、跟踪SLAM前沿动态论文,更新的很频繁 https://github.com/YiChenCityU/Recent_SLAM_Research 2、很全视觉slam资料大全 https://github.com/tzutalin/awesome-visual-slam 3、开源SLAM列表 OpenSLAM/awesome-SLAM-list 4、很全面的SLAM教程 https://github.com/kanster/awesome-slam 5、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS openMVG/awesome_3DReconstruction_list 6、很全的RGBD SLAM开源方案介绍 electech6/owesome-RGBD-SLAM 7、非常全面的相机总结,包括论文,设备厂商,算法,应用等 uzh-rpg/event-based_vision_resources 8、SLAM 学习与开发经验分享 GeekLiB/Lee-SLAM-source 9、中文注释版ORB-SLAM2 Vincentqyw/ORB-SLAM2-CHINESE 10、语义SLAM相关资料 月光亲了城:语义SLAM开源代码汇总   SLAM相关的工具和库 基础工具:Eigen、OpenCV、PCL、ROS 后端优化的库:g2o、GTSAM、Ceres solver SLAM相关开源代码 1、MonoSLAM Github地址: https://github.com/hanmekim/SceneLib2 2、PTAM Github地址: Parallel Tracking and Mapping for Small AR Workspaces (PTAM) 3、ORB-SLAM Github地址: http://webdiis.unizar.es/~raulmur/orbslam/ 4、LSD-SLAM Github地址: https://vision.in.tum.de/research/vslam/lsdslam 5、SVO Github地址: OpenSLAM/awesome-SLAM-list 6、DTAM Github地址: anuranbaka/OpenDTAM 7、DVO Github地址: https://github.com/tum-vision/dvo_slam 8、DSO Github地址: JakobEngel/dso 9、RTAB-MAP Github地址: introlab/rtabmap 10、RGBD-SLAM-V2 Github地址: felixendres/rgbdslam_v2 11、Elastic Fusion Github地址: mp3guy/ElasticFusion 12、Hector SLAM Github地址: hector_slam - ROS Wiki 13、GMapping Github地址: https://wiki.ros.org/gmapping 14、OKVIS Github地址: https://github.com/ethz-asl/okvis 15、ROVIO Github地址: ethz-asl/rovio 16、COSLAM Github地址: CoSLAM 17、DTSLAM Github地址:plumonito/dtslam 18、REBVO Github地址: JuanTarrio/rebvo SLAM相关数据集 1. Malaga Dataset 2. Tum: Computer Vision Lab: RGB-D 3. KITTI Dataset 4. University of Freiburg: Department of Computer Science 5. MRPT 6. ICDL-NUIM SLAM学习书籍 《概率机器人》 《视觉SLAM十四讲》 《计算机视觉中的多视图几何》 《机器人学中的状态估计》 《Principles of Robot Motion Theory,Algorithms and Implementation》

通江百科网  网站地图 本站所有文字、图片等资料均来自互联网,不代表本站赞同其观点,内容仅代表作者本人意见,若因此产生任何纠纷作者本人负责,本站亦不为其版权负责! 如有问题备案号:沪ICP备2023034348号-23